
11/20/2018 Nuclear Physics Postgraduate Lectures : E.S. Paul 1 

Nuclear Structure from 
Gamma-Ray Spectroscopy 

2019 Postgraduate Lectures 

Lecture 3: Spherical & Deformed Shell 
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Experimental Shell Effects 
 The energies of the 

first excited 2+ states 
in nuclei peak at the 
magic numbers of 
protons or neutrons 

 ‘B(E2)’ values ( 1/τ 
where τ is the mean 
lifetime) of the 2+ 
states reach a minimum 
at the magic numbers 

 ‘Magic’ nuclei are 
spherical and the least 
collective 



First 2+ Energies 
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N 

Z 
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Systematics Near Z(N) = 50 

Z = 50 N = 50 


100Sn (Z=N=50) and 132Sn (N=82) are doubly magic nuclei 
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Neutron Separation Energies 
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Shell Model – Mean Field 

 Assumption – ignore detailed two-body interactions 
 Each particle moves in a state independent of other 

particles 
 The Mean Field is the average smoothed-out 

interaction with all the other particles 
 An individual nucleon only experiences a central force 

A nucleon in the 
Mean Field of 
N-1 nucleons 

N nucleons in 
a nucleus 



11/20/2018 Nuclear Physics Postgraduate Lectures : E.S. Paul 7 

 If the short range interaction potential between two 
nucleons i and j is v(rij), then the average potential 
acting on each particle is:    
 

                             Vi(ri) =  j v(rij)  
 
 The Hamiltonian, H = iTi + ij v(rij), can be rewritten:  

 
             H’ = i[Ti + Vi(ri)]   +   λ [ij v(rij) - i Vi(ri)] 
                     mean field            residual interaction 
 
 For λ = 1, H’ = H. The shell model assumption is that        

λ  0, i.e. the central interaction is much larger than 
the residual interactions 

Shell Model Hamiltonian 
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Choice of Potential 
 A central potential V(ri) only depends on the distance    

ri and is made up of a superposition of short-range 
internucleonic potentials:  
 

                     V(ri) = ∫v|ri – r’| ρ(r’) dr’  
 
 ‘ρ(r’)’ is the density distribution of the nucleus 

 
 The internucleonic potential may be represented by a 

delta function: v(rij) = -V0 δ(rij) 
 

 Then: V(ri) = V0 ρ(r)  
 

 The Schrödinger equation is:  [T + V] Ψ(r) = E Ψ(r) 
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Some Potential Wells 
 Square Well:             V(r) = -V0 for r ≤ R0 

                                            =   0  for r > R0 

 

 Gaussian Well:           V(r) = -V0 exp[-(r/a)2] 

 

 Exponential Well:      V(r) = -V0 exp[-2r/a] 

 

 Yukawa Well:             V(r) = -(V0/r) exp[-r/a]  

 

 Harmonic Oscillator: V(r) = -V0[1-(r/R0)2] 

 

 Woods-Saxon:           V(r) = -V0 / {1 + exp[(r-R0)/a]} 
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Well Comparisons 
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Square Well Potential 
 Simplest form of potential 

 Since we have a spherically 
symmetric potential we can 
separate the solutions into  
angular and radial parts 

 Radial solutions are Bessel 
functions which satisfy the 
boundary condition Rnℓ(R) = 0 

 The eigenvalues are:  

        Rnℓ = {A/√(κr)} Jℓ+½(κr)  

    where A is a constant and κ is 

    the wave number of the nucleon:  

       κ2 = (2M/ħ2)[Enℓ + V] 

Infinite square 
well potential 
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Square Well Labels 
 The levels are labelled by n and ℓ (‘s’ = 0, ‘p’ = 1, ‘d’ = 2, 

‘f’ = 3, ‘g’ = 4, ‘h’ = 5, ‘i’ = 6, ‘j’ = 7, ‘k’ = 8) 
 

 Each level has 2(2ℓ + 1) substates 
 

 The first few levels (different from H atom): 
        Level          Occupation         Total 
          1s                     2                    2 
          1p                     6                    8 
          1d                   10                   18 
          2s                    2                   20 
          1f                   14                   34 
          2p                    6                   40 
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Harmonic Oscillator Potential 
 Easy to handle analytically 

 Form of potential:   

            VHO(r) = -V + ½mr2ω2  

 Solutions are Laguerre 
polynomials 

 Eigenenergies  are labelled by 
the oscillator quantum number N: 

            EN = (N + 3/2) ħω  

 For each N there are degenerate 
levels with n and ℓ that satisfy:  

      2(n-1) + ℓ = N,   N ≥ 0,   0 ≤ ℓ ≤ N 

 The parity of each shell is (-1)N 

Simple harmonic 
oscillator potential 
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Harmonic Oscillator Degeneracies 
 For each N there are degenerate energy levels with n 

and ℓ  that satisfy:  

 
               2(n-1) + ℓ = N,     N ≥ 0,    0 ≤ ℓ ≤ N 
 
 Even N contains only ℓ even states; odd N, odd ℓ 

 
 The degeneracy condition is: 

 

               Δℓ = 2  and  Δn = 1    (e.g. N = 4 3s, 2d, 1g orbits) 
 
 It is the fundamental reason for shell structure, i.e. 

clustering of levels 
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Harmonic Oscillator Labels 

 The number of degenerate levels for a given N is 
(N+1)(N+2) 

 

        N   allowed ℓ    EN   Occupation   Total 

         0       0           3/2          2              2 

         1        1           5/2          6              8 

         2     2,0          7/2         12            20 

         3     3,1           9/2         20           40 

         4    4,2,0        11/2        30            70 

         5    5,3,1        13/2        42           112 
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(Wrong) Magic Numbers 
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 In Atomic Physics the spin-orbit interaction comes 
about due to the interaction of an electron’s magnetic 
moment with the magnetic field generated by its  
motion about the nucleus 
 

 A similar interaction was introduced for nuclei to 
empirically fit the observed magic numbers 
 

 A term is added to the potential: 
 
                          V(r)  V(r) + μ ℓ.s 
 
 The new term makes the force felt by a nucleon 

dependent on the direction of its spin 

Spin-Orbit Potential 
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 The spin-orbit term does not violate 
spherical symmetry and leaves ℓ, j 
and jz as good quantum numbers, 
although ℓz and sz are not 

 The spin-orbit energy is: 
  
       Eℓ.s = {[4j(j+1)-4ℓ(ℓ+1)-1]/8}ħ2μ 
 
 By making μ < 0, the magic numbers 

can be reproduced 
 States with j = ℓ + ½ are lower in 

energy than those states with j = ℓ - 
½ (opposite way round to spin-orbit 
interaction in atoms !) 

Spin Orbit Energy 

The vectors L and 
S precess about J 
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Modified Harmonic Oscillator 

 The harmonic oscillator 
shells are shown to the  
left in this diagram 

 

 In the middle, an ℓ2 term  
is added to make the 
potential more realistic 

 

 A spin orbit term ℓ.s is 
added to the right with   
its strength adjusted to 
obtain the correct 
nuclear magic numbers 
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Woods-Saxon Potential 

 The Woods-Saxon (WS) nuclear potential is ‘supposedly’ 
the most realistic 
 

 The potential has the form:  
 

                      V(r) = -V0 / { 1 + exp[(r - R0) / a] } 

V0 ~ 50 MeV 
R0 ~ 6-7 fm (A=125-190) 
a ~ 0.5 fm 
4a = ‘skin thickness’ 
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WS vs. MHO Potentials 
 The Woods-Saxon (WS) 

potential is the most realistic 
 

 The ℓ2 term in the Modified 
Harmonic Oscillator (MHO) 
potential flattens the bottom 
of the potential making it look 
more like the Woods-Saxon 
shape 
 

 There are slight differences 
between the MHO and WS 
energy levels, e.g. the 
ordering of the 2d5/2 and 1g7/2 
levels is interchanged 
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 The Anisotropic Harmonic Oscillator (AHO) potential 
for a spheroidal nucleus deformed along the z-axis may 
be written:  

 

                  Vosc = ½M[ω
2 (x2 + y2 ) + ωz

2z2] 

 

 Here ω and  ωz represent the frequencies of the simple 
harmonic motion perpendicular and parallel to the 
nuclear symmetry axis, respectively, and are functions 
of the nuclear deformation:  

                  ωz ≈ ω0[1 – 2/3 δ],    ω ≈ ω0[1 + 1/3 δ] 

    and ω0
3 = ω

2ωz for volume conservation 

Anisotropic Harmonic Oscillator 
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 The Harmonic Oscillator quantum ω0 is usually taken to 
have an isospin dependence:  
 

              ħω0 = 41 A-1/3 [1 ± (N-Z)/3A]    MeV 
 
    where the minus sign is used for protons and the plus 

sign for neutrons 
 
 In the ‘stretched’ coordinate system, the potential may 

then be written simply as:  
 

              Vosc = ½ħω0(ε2) ρ2 [1 – 2/3 ε2 P2(cos θt)]  
 
    where ε2 is (yet) another deformation parameter  

Harmonic Oscillator Quantum 
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δ, β and ε Parameters 
 Three deformation parameters are often used: 

1. Delta: δ = ΔR/R 

2. Epsilon: ε2 defines a rotational ellipsoid 

3. Beta: β2 defines a rotational quadrupoloid 

 

 If the deformation is not so large, then the following 
approximations hold:  

        ε2 ≈ 0.946 β2 (1 - 0.1126β2) 

        δ  ≈ 0.946 β2 (1 - 0.2700β2) 

 

 Also the hexadecapole β4 parameter has opposite sign 
to the ε4 parameter: ε4 ≈ -0.85 β4  
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Solutions of the AHO 
 The eigenvalues of the AHO potential are:       

        E(nz,n) = [nz + ½] ħωz + [n + 1] ħω     

    or 

        E(N,nz,n) ≈ [N +3/2] ħω0 – 1/3δ[2nz - n] ħω0  

    with N = nz + n  
 

 The latter expression is simply the energies of a 
Spherical Harmonic Oscillator minus a correction term, 
proportional to the deformation 

 

 The energy levels are labelled by the asymptotic 
quantum numbers:  

                                  Ωπ [N nz Λ]  
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AHO Labels 
 The energy levels are labelled by the asymptotic 

quantum numbers: Ωπ [N nz Λ]  
 

 ‘N’: N = nx + ny + nz  (= nz + n) is the oscillator quantum 
number 
 

 ‘nz’: nz describes the z-axis component of N 
 

 ‘Λ’: Λ = ℓz is the projection of ℓ onto the z-axis 
 

 ‘Ω’: Ω = Λ + Σ is the projection of j = ℓ + s onto the z-
axis 
 

 ‘π’: π = (-1)ℓ is the parity of the state 
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The Λ, Σ, Ω Quantum Numbers 

 Spin projections:     Ω = Λ + Σ = Λ ± ½ 
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AHO Degeneracies 
 Some of the degeneracies of the SHO are lifted 

 
 Consider the N = 4 shell spherical oscillator shell which 

has degeneracy (N + 1)(N + 2) = 30 with ℓ = 4, 2, 0.  
 

 The onset of deformation causes  these levels to split 
into (N + 1) levels, each of degeneracy     2(n + 1): 

                       nz         n           Occupation 
                       4          0                    2 
                       3          1                    4   
                       2          2                    6 
                       1           3                   8 
                       0          4                   10 
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Levels of the AHO 

 The splitting of the   
N = 4 oscillator shell 
is shown here when 
deformation is 
introduced 

 

 Note that levels with 
large nz (and hence 
small n) are favoured 
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 Nilsson added terms proportional to ℓ2 and ℓ.s similar to 
the spherical case 
 

 The resulting Modified Harmonic Oscillator (MHO) or  
    Nilsson potential may be written as:   

 
          VMHO = Vosc – κħω0[2ℓt.s + μ(ℓt

2  - ℓt
2N]  

 
    where κ and μ are adjustable parameters. They are  
    different for each major oscillator shell 
 
 The ℓt.s term imitates the nuclear spin-orbit interaction 

in the stretched coordinate system 
 

 The ℓt
2 term deepens the effective potential for 

particles near the nuclear surface 

Nilsson Model 
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Remaining Degeneracies 
 The ℓt.s and ℓt

2 terms 
lift the 2(n + 1) 
degeneracy of the  

    N = nz + n states 
 
 States with different   

Ω now have different 
energy 
 

 Each Ωπ [N nz Λ] state 
is only twofold 
degenerate, 
corresponding to 
particles with ±Ω 

Nilsson Diagram 
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Nilsson Single-Particle Diagrams 

Z 

N 
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Splitting of Ω States 

 Low Ω states favour 
prolate shapes 

 

 High Ω states 
favour oblate 
shapes 

 

 Note that each Ω 
state is now only 
twofold degenerate 
(±Ω) 
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Splitting of Ω States 

David Campbell 
Florida State 
University 
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Asymptotic Quantum Numbers 

 Because of the additional ℓ.s and ℓ 2 terms the 
physical quantities labelled  by nz and Λ are not 
constants of the motion, but only approximately so 

 

 These quantum numbers  are called asymptotic as 
they only come good as ε2  ∞ 

 

 However, the quantum numbers N, Ω and π are always 
good labels provided that:  

1.  the nucleus is not rotating and 

2.  there are no residual interactions 
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Proton Nilsson Diagram 
 A ‘Nilsson Diagram’  

shows nuclear energy 
levels as a function of a 
quadrupole deformation 
parameter (β2, ε2 or δ) 

 

 In this diagram, the 
large spherical shell   
gap at Z = 50 is rapidly 
diminished by the onset 
of deformation for both 
prolate (β2 > 0) and 
oblate (β2 < 0) shapes 
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Intruder Orbitals 
 The slope of Nilsson 

levels is related to the 
single-particle matrix 
element of the 
quadrupole operator: 
dE/dβ = - k|r2Y20|k  
 

 Unnatural-parity low  
Ω prolate orbitals may 
‘intrude’ down into a 
lower shell at large 
deformation 
 

 This is the origin of 
superdeformation 
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Large Deformations 
 Deformed shell gaps 

(new ‘magic numbers’) 
emerge when the ratio 
of the major and minor 
nuclear axes are equal 
to the ratio of small 
integers  
 

 A superdeformed 
shape has a major to 
minor axis ratio of 2:1 
 

 A hyperdeformed 
shape has a major to 
minor axis ratio of 3:1 
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Superdeformed 152Dy 

 The SD band in 
152Dy is a very 
regular structure 
with equally 
spaced gamma-ray 
transitions 
 

 The spacing is 
relatively small, 
i.e. the band has a 
large moment of 
inertia (close to 
the rigid body 
value) 

Original SD γ-ray spectrum  
from 1986 (Daresbury) 



11/20/2018 Nuclear Physics Postgraduate Lectures : E.S. Paul 40 

Superdeformed Axis Ratios 
 The moment of inertia of a rigid sphere is: 
        rig = (A5/3/72)   ħ2 MeV-1 

 
 The moment of inertia of a prolate ellipsoid undergoing 

rigid rotation is:  
        rig = (A5/3/72) (1 + x2) / 2x2/3    ħ2 MeV-1  

    where x is the ratio of major to minor axes 
 
 The moment of inertia is not always a good indicator of 

nuclear deformation (e.g. pairing) 
 

 The quadrupole moment (charge distribution) is  a 
better indicator:  

        Q0 = (2/5) Z R2 (x2 – 1) / x2/3    eb  
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SD Systematics 
         Nucleus            Q0 (eb)         Axis Ratio 

 
                  36Ar                 1.18                1.55 
                  60Zn                2.75                1.54 
                  82Sr                3.54                1.47 
                  91Tc                   8.1                1.85 
                  108Cd                >9.5                >1.8 
                  132Ce                 7.4                1.45 
                  152Dy                17.5               1.85 
                  192Hg                17.7               1.61 
                   236U                   32               1.84 
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SD Regions 

A 

Z 


