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Experimental Shell Effects
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= The energies of the
first excited 2* states
in nuclei peak at the
magic numbers of
protons or neutrons

| = 'B(E2) values (< 1/7

" where T is the mean
lifetime) of the 2*
states reach a minimum
at the magic humbers

= 'Magic’ nuclei are
spherical and the least
collective
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First 2* Energies
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Systematics Near Z(N) = 50
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= 1005n (Z=N=50) and !325n (N=82) are doubly magic nuclei
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Neutron Separation Energies
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Shell Model - Mean Field

A nucleon in the
Mean Field of
N-1 nucleons

N nucleons in
a nucleus

= Assumption - ignore detailed two-body interactions

= Each particle moves in a state independent of other
particles

= The Mean Field is the average smoothed-out
interaction with all the other particles

= An individual nucleon only experiences a central force
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Shell Model Hamiltonian

= If the short range interaction potential between two
hucleons i and j is v(r;;), then the average potential
acting on each particle is:

Vi(ry) = (2 v(ri;) )

= The Hamiltonian, H = 2T, + X;; v(r;;), can be rewritten:

H = [T+ Vilr)] + AL v(ryp) - 25 Vi(r)]

mean field residual interaction

= For A=1,H = H. The shell model assumption is that
A — 0, i.e. the central interaction is much larger than
the residual interactions
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Choice of Potential

= A central potential V(r;) only depends on the distance
r. and is made up of a superposition of short-range
internucleonic potentials:

V(r;) = Jvir;-r'| p(r') dr'
= 'o(r') is the density distribution of the nucleus

= The internucleonic potential may be represented by a
delta function: v(r;;) = -V, 3(r;;)

= Then: V(r;) = Vop(r)

= The Schraddinger equationis: [T+ V]W¥(r) = E ¥(r)
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Some Potential Wells

= Square Well: V(r) = -V for r <R,
= 0 forr>R,
= Gaussian Well: V(r) = -V, exp[-(r/a)?]

= Exponential Well:  V(r) = -V, exp[-2r/a]
= Yukawa Well: V(r) = -(Vo/r) exp[-r/a]
= Harmonic Oscillator: V(r) = -Vy[1-(r/Rp)?]

= Woods-Saxon: V(r) = -V / {1 + exp[(r-Ry)/al}
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Well Comparisons

— Square Well
Ganssian Well

— === Exponential Well

— =— = Harmonic Oscillator
— == Woods-Saxon

0 R

11/20/2018 Nuclear Physics Postgraduate Lectures : E.S. Paul

10



Square Well Potential

= Simplest form of potential

= Since we have a spherically
symmetric potential we can
separate the solutions into
angular and radial parts

= Radial solutions are Bessel
functions which satisfy the
boundary condition R ,(R) = O

= The eigenvalues are:
Rpe = {A/V(kr)} Jp.s(kr)
where A is a constant and K is

Infinite square
well potential the wave number of the nucleon:

K2 = (2M/R2)[E, ¢ + V]
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Square Well Labels

= The levels are labelled by nand £ ('s'=0,'p'=1,'d" = 2,
'f'=3,9=4,'n"=5,"1"=6,'j=7,'k = 8)

= Each level has 2(22 + 1) substates

= The first few levels (different from H atom):

Level Occupation Total
1s 2 2
1p 6 8
1d 10 18
2s 2 20
1f 14 34
2p 6 40
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Harmonic Oscillator Potential

= Easy to handle analytically
Form of potential:

Vio(r) = -V + smriw?
Solutions are Laguerre
polynomials

Eigenenergies are labelled by
the oscillator quantum number N:

Ey = (N +3/2) huw

= For each N there are degenerate
levels with n and ¢ that satisfy:

Simpie harmonic 2(n-1)+ £=N, N20, 0<#<N
oscillator potential ! d
= The parity of each shell is (-1)N
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Harmonic Oscillator Degeneracies

= For each N there are degenerate energy levels with n
and ¢ that satisfy:

2(n-1)+ =N, N220, O0<?<N
= Even N contains only £ even states; odd N, odd ¢
= The degeneracy condition is:
Af=2 and An=1 (e.g.N =4 3s, 2d, 1g orbits)

» Tt is the fundamental reason for shell structure, i.e.
clustering of levels
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Harmonic Oscillator Labels

= The number of degenerate levels for a given N is

(N+1)(N+2)

N allowed? Ey Occupation Total
0O O 3/2 2 2

1 1 5/2 6 8
2 20 7/2 12 20
3 31 9/2 20 40
4 420 11/2 30 70
5 531 13/2 42 112

11/20/2018
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(Wrong) Magic Numbers
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Spin-Orbit Potential

= Tn Atomic Physics the spin-orbit interaction comes
about due to the interaction of an electron's magnetic
moment with the magnetic field generated by its
motion about the nucleus

= A similar interaction was introduced for nuclei to
empirically fit the observed magic numbers

= A term is added to the potential:

V(r) > V(r) +u ts

= The new term makes the force felt by a nucleon
dependent on the direction of its spin
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Spin Orbit Energy

........ = The spin-orbit term does not violate
spherical symmetry and leaves ¢, j
and j, as good quantum numbers,
although £, and s, are not

J. = The spin-orbit energy is:

Es = {[4)(j+1)-4€(£+1)-1]/8}h%p

The vectors L and = By making p < O, the magic numbers
S precess about J can be repr'oduced

= States with j =12 + 3 are lower in
energy than those states with j =€ -
5 (opposite way round to spin-orbit
interaction in atoms |)
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Modified Harmonic Oscillator
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The harmonic oscillator
shells are shown to the
left in this diagram

In the middle, an €2 term
Is added to make the
potential more realistic

A spin orbit term £.s is
added to the right with
its strength adjusted to
obtain the correct
nuclear magic humbers
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Woods-Saxon Potential

Y 0--
Vo ~ 50 MeV
Ry~ 6-7 fm (A=125-190)
= a~0bfm
4q = 'skin thickness'
~V,

= The Woods-Saxon (WS) nuclear potential is 'supposedly’
the most realistic

= The potential has the form:

V(r) = -Vo/ {1+ expl(r-Ry)/a]}
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WS vs. MHO Potentials
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= The Woods-Saxon (WS)

potential is the most realistic

The 22 term in the Modified
Harmonic Oscillator (MHO)
potential flattens the bottom
of the potential making it look
more like the Woods-Saxon
shape

There are slight differences
between the MHO and WS
energy levels, e.g. the
ordering of the 2d5,, and 1g-,,
levels is interchanged

Nuclear Physics Postgraduate Lectures : E.S. Paul 21



Anisotropic Harmonic Oscillator

= The Anisotropic Harmonic Oscillator (AHO) potential
for a spheroidal nucleus deformed along the z-axis may
be written:

Voo = 2M[w, 2 (x2+ y?) + w,22?]

= Here w, and w, represent the frequencies of the simple
harmonic motion perpendicular and parallel o the
nuclear symmetry axis, respectively, and are functions
of the nuclear deformation:

w, X wy[l-2/308], w, *wy[l+1/338]
and wy3 = w,%w, for volume conservation
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Harmonic Oscillator Quantum

= The Harmonic Oscillator quantum wy is usually taken to
have an isospin dependence:

hwy = 41 A3 [1+(N-Z)/3A]| MeV

where the minus sign is used for protons and the plus
sign for neutrons

= Tn the 'stretched coordinate system, the potential may
then be written simply as:

Vise = zhwg(ez) p2 [1 - 2/3 €, Py(cos 6,)]

where ¢, is (yet) another deformation parameter
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d, p and € Parameters

= Three deformation parameters are often used:
1. Delta: § = AR/R
2. Epsilon: g, defines a rotational ellipsoid
3. Beta: p, defines a rotational quadrupoloid

= TIf the deformation is not so large, then the following
approximations hold:

e, % 0.946 p, (1 - 0.1126p.,)
5 ~0.946 p, (1-0.2700p,)

= Also the hexadecapole p, parameter has opposite sign
to the ¢, parameter: ¢, & -0.85 p,
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Solutions of the AHO

= The eigenvalues of the AHO potential are:
E(h,n)=[n,+3]1hw,+[n +1]hw,
or
E(N,n,n) = [N+3/2] hw,y - 1/38[2n, - n, ] hw,
withN=n,+n,

= The latter expression is simply the energies of a
Spherical Harmonic Oscillator minus a correction term,
proportional to the deformation

= The energy levels are labelled by the asymptotic
quantum numbers:

Q" [N n, A]
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AHO Labels

= The energy levels are labelled by the asymptotic
quantum numbers: Q™ [N n, A]

= 'N:N=n,+n,+n, (=n,+n,)is the oscillator quantum
number

= 'n,". n,describes the z-axis component of N
= 'AN: A =7, is the projection of ¢onto the z-axis

= ‘()" ()= A+ % is the projection of j = £+ s onto the z-
axis

= 'm'i = (-1)%is the parity of the state
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The A, Z, €2 Quantum Numbers

Y

= Spinprojections: Q=A+X=A+3
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AHO Degeneracies

= Some of the degeneracies of the SHO are lifted

= Consider the N = 4 shell spherical oscillator shell which
has degeneracy (N + 1)(N +2) = 30 with2 =4, 2, 0.

= The onset of deformation causes these levels to split
into (N + 1) levels, each of degeneracy 2(n, + 1):

n, n, Occupation
4 0 2

3 1 4

2 2 6

1 3 8

0 4 10

11/20/2018 Nuclear Physics Postgraduate Lectures : E.S. Paul

28



Anisotropic Harmonic Oscillator

n,=0,n,=4
A=F¥412 0

n=1n=3
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(&)
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spherical

N=4

@0

energy

deformation A =

Levels of the AHO

= The splitting of the
N = 4 oscillator shell
is shown here when
deformation is
infroduced

= Note that levels with

large n, (and hence
small n,) are favoured
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Nilsson Model

= Nilsson added terms proportional to €2 and £.s similar to
the spherical case

= The resulting Modified Harmonic Oscillator (MHO) or
Nilsson potential may be written as:

Viaro = Vosc = Khwg[28;.5 + p(€:° - (€,%)\]

where k and p are adjustable parameters. They are
different for each major oscillator shell

= The {,.s term imitates the nuclear spin-orbit interaction
in the stretched coordinate system

= The 2.2 term deepens the effective potential for
particles near the nuclear surface
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Remaining Degeneracies
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= The £;.s and €, terms

lift the 2(n, + 1)
degeneracy of the

N = n,+ n, states

States with different
() now have different
energy

Each ()™ [N n, A] state
is only twofold
degenerate,
corresponding to
particles with +()
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Nilsson Single-Particle Diagrams

Single—particle Energy (MeV)
Single—particle Energy (MeV)

\ . -
5 } ol : i /. 4 -':fi - + ¥ ’ T + f + 1 + . + } F
03 02 -01 00 01 02 0. 04 -03 -02 -01 0.0 01 02 03 04
Quadrupole Deformation [3, Quadrupole Deformation [3,

11/20/2018 Nuclear Physics Postgraduate Lectures : E.S. Paul

32



Splitting of () States

' Jl .

= Low () states favour
prolate shapes

= High () states
favour oblate
shapes

= Note that each (2
state is now only
twofold degenerate

(x£2)

Oblate Prolate
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Splitting of ) States

i%._av Orbitals With a Prolate Core

Symmet
/ Axis Y
David Campbell
Florida State
University
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Asymptotic Quantum Numbers

= Because of the additional Zs and €2 terms the
physical quantities labelled by n,and A are not
constants of the motion, but only approximately so

= These quantum numbers are called asymptotic as
they only come good as €, & «

= However, the quantum numbers N, 2 and 1 are always
good labels provided that:

1. the nucleus is not rotating and
2. there are no residual interactions
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Proton Nilsson Diagram
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quadrupole deformation
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= TIn this diagram, the
large spherical shell
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Single—particle Energy (MeV)
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Intruder Orbitals

Neutron single particle levels : Woods—Saxon potential
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= The slope of Nilsson

levels is related to the
single-particle matrix
element of the
quadrupole operator:

dE/dp = - (k|r2Y 5| k)

Unnatural-parity low
(1 prolate orbitals may
'infrude’ down into a
lower shell at large
deformation

This is the origin of
superdeformation
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Energy in units of ha,
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N s = Deformed shell gaps

(new 'magic numbers")
emerge when the ratio
of the major and minor
nuclear axes are equal
to the ratio of small
integers

A superdeformed
shape has a major to
minor axis ratio of 2:1

A hyperdeformed
shape has a major to
minor axis ratio of 3:1
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Superdeformed 22Dy
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1.4

The SD band in
192Dy is a very
regular structure
with equally
spaced gamma-ray
transitions

The spacing is
relatively small,
i.e. the band has a
large moment of
inertia (close to
the rigid body
value)
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Superdeformed Axis Ratios

= The moment of inertia of a rigid sphere is:
Spig = (AY3/72) h2 MeV+!

= The moment of inertia of a prolate ellipsoid undergoing
rigid rotation is:
Spig= (AY3/72) (1 + x2) / 2x373 1h2 MeV+!
where x is the ratio of major to minor axes

= The moment of inertia is not always a good indicator of
nuclear deformation (e.g. pairing)

= The quadrupole moment (charge distribution) is a
better indicator:

Qo= (2/5) ZR?(x?-1)/ x?/3 eb
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SD Systematics

Nucleus Qo (eb) AXis Ratio
36Ap 1.18 155
60Zn 2.75 1.54
82Sr 3.54 1.47
1Tc 8.1 1.85
108Cd >9.5 >1.8
132Ce 7.4 1.45
152Dy 17.5 1.85
192Hg 17.7 161
2360 32 1.84
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Superdeformation

SD Regions
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