Nuclear Structure from Gamma-Ray Spectroscopy

2019 Postgraduate Lectures

Lecture 3: Spherical & Deformed Shell Model

11/20/2018

Nuclear Physics Postgraduate Lectures : E.S. Paul

Experimental Shell Effects

S. Raman et al., Atomic Data & Nuclear Data Tables 78, 1

The energies of the first excited 2⁺ states in nuclei peak at the magic numbers of protons or neutrons 'B(E2)' values ($\propto 1/\tau$ where \mathbf{T} is the mean lifetime) of the 2+ states reach a minimum at the magic numbers

 'Magic' nuclei are spherical and the least collective

11/20/2018

First 2⁺ Energies

11/20/2018

Nuclear Physics Postgraduate Lectures : E.S. Paul

Systematics Near Z(N) = 50

¹⁰⁰Sn (Z=N=50) and ¹³²Sn (N=82) are doubly magic nuclei

^{11/20/2018}

Neutron Separation Energies

11/20/2018

Nuclear Physics Postgraduate Lectures : E.S. Paul

Shell Model - Mean Field

N nucleons in a nucleus

A nucleon in the Mean Field of N-1 nucleons

- Assumption ignore detailed two-body interactions
- Each particle moves in a state independent of other particles
- The Mean Field is the average smoothed-out interaction with all the other particles
- An individual nucleon only experiences a central force

Shell Model Hamiltonian

 If the short range interaction potential between two nucleons i and j is v(r_{ij}), then the average potential acting on each particle is:

$$V_i(r_i) = \langle \sum_j v(r_{ij}) \rangle$$

• The Hamiltonian, $H = \sum_{i} T_{i} + \sum_{ij} v(r_{ij})$, can be rewritten:

 $\begin{aligned} H' &= \sum_{i} [T_{i} + V_{i}(r_{i})] + & \Lambda [\sum_{ij} v(r_{ij}) - \sum_{i} V_{i}(r_{i})] \\ mean field & residual interaction \end{aligned}$

• For $\Lambda = 1$, H' = H. The shell model assumption is that $\Lambda \rightarrow 0$, i.e. the central interaction is much larger than the residual interactions

11/20/2018

Nuclear Physics Postgraduate Lectures : E.S. Paul

Choice of Potential

 A <u>central</u> potential V(r_i) only depends on the distance r_i and is made up of a superposition of short-range internucleonic potentials:

$$V(r_i) = \int v |r_i - r'| \rho(r') dr'$$

- 'p(r')' is the density distribution of the nucleus
- The internucleonic potential may be represented by a delta function: $v(r_{ij}) = -V_0 \delta(r_{ij})$
- Then: $V(r_i) = V_0 \rho(r)$
- The Schrödinger equation is: $[T + V] \Psi(r) = E \Psi(r)$

11/20/2018

Some Potential Wells

- Square Well: $V(r) = -V_0 \text{ for } r \leq R_0$ = 0 for r > R_0
- Gaussian Well: $V(r) = -V_0 \exp[-(r/a)^2]$
- Exponential Well: $V(r) = -V_0 \exp[-2r/a]$
- Yukawa Well: $V(r) = -(V_0/r) \exp[-r/a]$
- Harmonic Oscillator: $V(r) = -V_0[1-(r/R_0)^2]$
- Woods-Saxon: $V(r) = -V_0 / \{1 + \exp[(r-R_0)/a]\}$

Well Comparisons

Square Well Potential

Infinite square well potential

Simplest form of potential Since we have a spherically symmetric potential we can separate the solutions into angular and radial parts Radial solutions are **Bessel** functions which satisfy the boundary condition $R_{n\ell}(R) = 0$ The eigenvalues are: $R_{n\ell} = \{A/J(\kappa r)\} J_{\ell+\frac{1}{2}}(\kappa r)$ where A is a constant and κ is the wave number of the nucleon: $\kappa^{2} = (2M/\hbar^{2})[E_{nf} + V]$

Square Well Labels

- The levels are labelled by n and l ('s' = 0, 'p' = 1, 'd' = 2, 'f' = 3, 'g' = 4, 'h' = 5, 'i' = 6, 'j' = 7, 'k' = 8)
- Each level has 2(2l + 1) substates
- The first few levels (different from H atom):

Level	<u>Occupation</u>	<u>Total</u>
1 s	2	2
1p	6	8
1d	10	18
2s	2	20
1f	14	34
2р	6	40

Harmonic Oscillator Potential

Simple harmonic oscillator potential

- Easy to handle analytically
- Form of potential:
 - $V_{HO}(r) = -V + \frac{1}{2}mr^2\omega^2$
 - Solutions are Laguerre polynomials
 - Eigenenergies are labelled by the oscillator quantum number N:

 $E_{N} = (N + 3/2) \hbar \omega$

 For each N there are degenerate levels with n and *l* that satisfy:

 $2(n-1) + \ell = N, N \ge 0, 0 \le \ell \le N$

The parity of each shell is (-1)^N

Harmonic Oscillator Degeneracies

 For each N there are degenerate energy levels with n and *l* that satisfy:

 $2(n-1) + \ell = N, \quad N \ge 0, \quad 0 \le \ell \le N$

- Even N contains only *l* even states; odd N, odd *l*
- The degeneracy condition is:

 $\Delta \ell = 2$ and $\Delta n = 1$ (e.g. N = 4 3s, 2d, 1g orbits)

 It is the fundamental reason for shell structure, i.e. clustering of levels

11/20/2018

Harmonic Oscillator Labels

 The number of degenerate levels for a given N is (N+1)(N+2)

<u>N</u>	<u>allowed </u>	<u>E</u> _N	<u>Occupation</u>	<u>Total</u>
0	0	3/2	2	2
1	1	5/2	6	8
2	2,0	7/2	12	20
3	3,1	9/2	20	40
4	4,2,0	11/2	30	70
5	5,3,1	13/2	42	112

(Wrong) Magic Numbers

Spin-Orbit Potential

- In Atomic Physics the spin-orbit interaction comes about due to the interaction of an electron's magnetic moment with the magnetic field generated by its motion about the nucleus
- A similar interaction was introduced for nuclei to empirically fit the observed magic numbers
- A term is added to the potential:

 The new term makes the force felt by a nucleon dependent on the direction of its spin

11/20/2018

Spin Orbit Energy

The vectors \underline{L} and \underline{S} precess about \underline{J}

- The spin-orbit term does not violate spherical symmetry and leaves l, j and jz as good quantum numbers, although lz and sz are not
- ^j_z The spin-orbit energy is:

 $\mathsf{E}_{\ell,s} = \{ [4j(j+1)-4\ell(\ell+1)-1]/8 \} \hbar^2 \mu$

- By making µ < 0, the magic numbers can be reproduced
- States with j = l + ½ are lower in energy than those states with j = l -½ (opposite way round to spin-orbit interaction in atoms !)

Modified Harmonic Oscillator

- The harmonic oscillator shells are shown to the left in this diagram
- In the middle, an l² term is added to make the potential more realistic
- A spin orbit term <u>l.s</u> is added to the right with its strength adjusted to obtain the correct nuclear magic numbers

- The Woods-Saxon (WS) nuclear potential is 'supposedly' the most realistic
- The potential has the form:

$$V(r) = -V_0 / \{ 1 + exp[(r - R_0) / a] \}$$

WS vs. MHO Potentials

The Woods-Saxon (WS) potential is the most realistic

- The ℓ^2 term in the Modified Harmonic Oscillator (MHO) potential flattens the bottom of the potential making it look more like the Woods-Saxon shape
- There are slight differences between the MHO and WS energy levels, e.g. the ordering of the $2d_{5/2}$ and $1g_{7/2}$ levels is interchanged

Anisotropic Harmonic Oscillator

 The Anisotropic Harmonic Oscillator (AHO) potential for a spheroidal nucleus deformed along the z-axis may be written:

$$V_{osc} = \frac{1}{2}M[\omega_{\perp}^{2}(x^{2}+y^{2})+\omega_{z}^{2}z^{2}]$$

 Here w₁ and w_z represent the frequencies of the simple harmonic motion perpendicular and parallel to the nuclear symmetry axis, respectively, and are functions of the nuclear deformation:

$$\omega_z \approx \omega_0 [1 - 2/3 \delta], \quad \omega_\perp \approx \omega_0 [1 + 1/3 \delta]$$

and $\omega_0^3 = \omega_\perp^2 \omega_z$ for volume conservation

Harmonic Oscillator Quantum

• The Harmonic Oscillator quantum w_0 is usually taken to have an isospin dependence:

$$\hbar \omega_0 = 41 \ A^{-1/3} \left[1 \pm (N-Z)/3A \right]$$
 MeV

where the <u>minus</u> sign is used for protons and the <u>plus</u> sign for neutrons

In the 'stretched' coordinate system, the potential may then be written simply as:

$$V_{osc} = \frac{1}{2} \hbar \omega_0(\epsilon_2) \rho^2 \left[1 - 2/3 \epsilon_2 P_2(\cos \theta_{\dagger})\right]$$

where ε_2 is (yet) another deformation parameter

11/20/2018

Nuclear Physics Postgraduate Lectures : E.S. Paul

δ,β and ϵ Parameters

- Three deformation parameters are often used:
 - 1. Delta: $\delta = \Delta R/R$
 - 2. Epsilon: ε_2 defines a rotational ellipsoid
 - 3. Beta: β_2 defines a rotational quadrupoloid
- If the deformation is not so large, then the following approximations hold:

 $\varepsilon_2 \approx 0.946 \beta_2 (1 - 0.1126\beta_2)$ $\overline{\Sigma} \approx 0.046 \beta_2 (1 - 0.2700\beta_2)$

- δ ≈ 0.946 β₂ (1 0.2700β₂)
- Also the hexadecapole β_4 parameter has <u>opposite</u> sign to the ϵ_4 parameter: $\epsilon_4 \approx -0.85 \beta_4$

Solutions of the AHO

- The eigenvalues of the AHO potential are: $E(n_z,n_{\perp}) = [n_z + \frac{1}{2}] \hbar w_z + [n_{\perp} + 1] \hbar w_{\perp}$ or $E(N,n_z,n_{\perp}) \approx [N + 3/2] \hbar w_0 - 1/3\delta[2n_z - n_{\perp}] \hbar w_0$ with N = n_z + n_1
- The latter expression is simply the energies of a Spherical Harmonic Oscillator minus a correction term, proportional to the deformation
- The energy levels are labelled by the asymptotic quantum numbers:

$\Omega^{\pi} [N n_z \Lambda]$

11/20/2018

AHO Labels

- The energy levels are labelled by the asymptotic quantum numbers: $\Omega^{\pi} [N n_z \Lambda]$
- 'N': N = $n_x + n_y + n_z$ (= $n_z + n_\perp$) is the oscillator quantum number
- 'nz': nz describes the z-axis component of N
- ' Λ ': $\Lambda = \ell_z$ is the projection of ℓ onto the z-axis
- ' Ω ': $\Omega = \Lambda + \Sigma$ is the projection of $j = \ell + s$ onto the z-axis
- ' π ': $\pi = (-1)^{\ell}$ is the parity of the state

11/20/2018

Nuclear Physics Postgraduate Lectures : E.S. Paul

The Λ, Σ, Ω Quantum Numbers

• Spin projections: $\Omega = \Lambda + \Sigma = \Lambda \pm \frac{1}{2}$

AHO Degeneracies

- Some of the degeneracies of the SHO are lifted
- Consider the N = 4 shell spherical oscillator shell which has degeneracy (N + 1)(N + 2) = 30 with l = 4, 2, 0.
- The onset of deformation causes these levels to split into (N + 1) levels, each of degeneracy $2(n_{\perp} + 1)$:

<u>n</u> z	<u>n</u> ⊥	<u>Occupation</u>
4	0	2
3	1	4
2	2	6
1	3	8
0	4	10

Levels of the AHO

- The splitting of the N = 4 oscillator shell is shown here when deformation is introduced
- Note that levels with large n_z (and hence small n_\perp) are favoured

Nilsson Model

- Nilsson added terms proportional to l² and <u>l.s</u> similar to the spherical case
- The resulting Modified Harmonic Oscillator (MHO) or Nilsson potential may be written as:

 $V_{\text{MHO}} = V_{\text{osc}} - \kappa \hbar \omega_0 [2\underline{\ell}_{\dagger} \cdot \underline{s} + \mu (\ell_{\dagger}^2 - \langle \ell_{\dagger}^2 \rangle_{\text{N}}]$

where κ and μ are adjustable parameters. They are different for each major oscillator shell

- The <u>l</u>.<u>s</u> term imitates the nuclear spin-orbit interaction in the stretched coordinate system
- The l_{\dagger}^2 term deepens the effective potential for particles near the nuclear surface

11/20/2018

Nuclear Physics Postgraduate Lectures : E.S. Paul

Remaining Degeneracies

• The $\underline{\ell}_{+}$. \underline{s} and ℓ_{+}^{2} terms lift the $2(n_{\perp} + 1)$ degeneracy of the N = $n_{z} + n_{\perp}$ states

- States with different
 Ω now have different energy
- Each Ω^π [N n_z Λ] state is only <u>twofold</u> degenerate, corresponding to particles with ±Ω

Nilsson Single-Particle Diagrams

11/20/2018

Nuclear Physics Postgraduate Lectures : E.S. Paul

Splitting of Ω States

- Low Ω states favour prolate shapes
- <u>High</u> Ω states favour <u>oblate</u> shapes
- Note that each Ω state is now only twofold degenerate $(\pm \Omega)$

 Ω_{Λ}

 Ω_3

Prolate

Ωı

Ω4

 Ω_3

 Ω_2

11/20/2018

Asymptotic Quantum Numbers

- Because of the additional $\frac{l.s}{l.s}$ and l^2 terms the physical quantities labelled by n_z and Λ are not constants of the motion, but only approximately so
- These quantum numbers are called <u>asymptotic</u> as they only come good as $\epsilon_2 \rightarrow \infty$
- However, the quantum numbers N, Ω and π are always good labels provided that:
 - 1. the nucleus is not rotating and
 - 2. there are no residual interactions

Proton Nilsson Diagram

- A '<u>Nilsson Diagram'</u> shows nuclear energy levels as a function of a quadrupole deformation parameter (β_2 , ϵ_2 or δ)
- In this diagram, the large spherical shell gap at Z = 50 is rapidly diminished by the onset of deformation for both prolate ($\beta_2 > 0$) and oblate ($\beta_2 < 0$) shapes

Intruder Orbitals

The slope of Nilsson levels is related to the single-particle matrix element of the quadrupole operator: $dE/d\beta = - \langle k | r^2 Y_{20} | k \rangle$

 Unnatural-parity low
 Ω prolate orbitals may 'intrude' down into a lower shell at large deformation

 This is the origin of superdeformation

Large Deformations

Deformed shell gaps (new 'magic numbers') emerge when the ratio of the major and minor nuclear axes are equal to the ratio of small integers

 A superdeformed shape has a major to minor axis ratio of 2:1

A hyperdeformed shape has a major to minor axis ratio of 3:1

Superdeformed ¹⁵²Dy

The SD band in ¹⁵²Dy is a very regular structure with equally spaced gamma-ray transitions

The spacing is relatively small, i.e. the band has a large moment of inertia (close to the rigid body value)

Superdeformed Axis Ratios

- The moment of inertia of a rigid sphere is: $\Im_{rig} = (A^{5/3}/72) \hbar^2 MeV^{-1}$
- The moment of inertia of a prolate ellipsoid undergoing rigid rotation is:

 $\Im_{rig} = (A^{5/3}/72)(1 + x^2) / 2x^{2/3} \hbar^2 MeV^{-1}$

where \mathbf{x} is the ratio of major to minor axes

- The moment of inertia is not always a good indicator of nuclear deformation (e.g. pairing)
- The quadrupole moment (charge distribution) is a better indicator:

 $Q_0 = (2/5) Z R^2 (x^2 - 1) / x^{2/3}$ eb

11/20/2018

Nuclear Physics Postgraduate Lectures : E.S. Paul

SD Systematics

Nucleus	<u>Q₀(eb)</u>	<u>Axis Ratio</u>
³⁶ Ar	1.18	1.55
⁶⁰ Zn	2.75	1.54
⁸² Sr	3.54	1.47
⁹¹ Tc	8.1	1.85
¹⁰⁸ Cd	>9.5	>1.8
¹³² Ce	7.4	1.45
¹⁵² Dy	17.5	1.85
¹⁹² Hg	17.7	1.61
2360	32	1.84

SD Regions

11/20/2018

Nuclear Physics Postgraduate Lectures : E.S. Paul